Membrane domains and flagellar pocket boundaries are influenced by the cytoskeleton in African trypanosomes.
نویسندگان
چکیده
A key feature of immune evasion for African trypanosomes is the functional specialization of their surface membrane in an invagination known as the flagellar pocket (FP), the cell's sole site of endocytosis and exocytosis. The FP membrane is biochemically distinct yet continuous with those of the cell body and the flagellum. The structural features maintaining this individuality are not known, and we lack a clear understanding of how extracellular components gain access to the FP. Here, we have defined domains and boundaries on these surface membranes and identified their association with internal cytoskeletal features. The FP membrane appears largely homogeneous and uniformly involved in endocytosis. However, when endocytosis is blocked, receptor-mediated and fluid-phase endocytic markers accumulate specifically on membrane associated with four specialized microtubules in the FP region. These microtubules traverse a distinct boundary and associate with a channel that connects the FP lumen to the extracellular space, suggesting that the channel is the major transport route into the FP.
منابع مشابه
The flagellar pocket of African trypanosomes is a critical sorting station for protein and membrane
African trypanosomes are uni-flagellated protozoan parasites that cause African sleeping sickness, a fatal disease with devastating health and economic consequences. These parasites are indigenous to sub-Saharan Africa, where it is estimated that 300,000 people are infected annually and 55 million are at risk (WHO, 1996). In the last three decades there has been a dramatic and steady rise in th...
متن کاملA Trypanosoma brucei Protein Required for Maintenance of the Flagellum Attachment Zone and Flagellar Pocket ER Domains
Trypanosomes and Leishmanias are important human parasites whose cellular architecture is centred on the single flagellum. In trypanosomes, this flagellum is attached to the cell along a complex flagellum attachment zone (FAZ), comprising flagellar and cytoplasmic components, the integrity of which is required for correct cell morphogenesis and division. The cytoplasmic FAZ cytoskeleton is cons...
متن کاملAssembly mechanism of Trypanosoma brucei BILBO1 at the flagellar pocket collar
The flagellar pocket is a bulb-like invagination of the plasma membrane that encloses the base of the single flagellum in trypanosomes. It is the site of all endo- and exocytic activity in the parasite and has thus been proposed to be a therapeutic target. At the neck of the flagellar pocket is an electron-dense cytoskeletal structure named the flagellar pocket collar. The protein BILBO1 was th...
متن کاملThe trypanosome flagellum.
Introduction African Trypanosomes are flagellated protozoan parasites that cause sleeping sickness in humans and Nagana in cattle. During its life cycle, Trypanosoma brucei alternates between an insect vector (tsetse fly) and a mammalian host. Within each of these, the parasite proliferates and undergoes separate periods of differentiation in preparation for each new host/vector environment. Th...
متن کاملHost-parasite interactions and trypanosome morphogenesis: a flagellar pocketful of goodies.
Trypanosomes are characterised by the possession of a single flagellum and a subpellicular microtubule cytoskeleton. The flagellum is more than an organelle for motility; its position and polarity along with the sub-pellicular cytoskeleton enables the morphogenesis of a distinct flagellar pocket and the flagellar basal body is responsible for positioning and segregating the kinetoplast--the mit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 41 شماره
صفحات -
تاریخ انتشار 2009